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Abstract 

Recognizing the expressive power of graph representation and the abilit y of certain graph 

grammars to generalize, we attempt to use graph grammar learning for concept formation. In this 

paper we describe our initial progress toward that goal, and focus on how certain graph 

grammars can be learned from examples. We also establish grounds for using graph grammars in 

machine learning tasks. Several examples are presented to highlight the validity of the approach.  

 
Introduction 

Graphs are important data structures because of their abilit y to represent any kind of data. 

Algorithms that generate theories of graphs are of great importance in data mining and machine 

learning. In this paper we describe an algorithm which learns graph grammars—a set of grammar 

production rules that describe a graph-based database. 

The goal of our research is to adapt graph grammar learning for concept formation, hoping 

that the expressive power of graphs and the abili ty of graph grammars to generalize will t urn out 

to be a powerful learning paradigm. This paper presents initial progress toward that goal and sets 

the stage for subsequent work. 

Only a few algorithms exist for inference of graph grammars. An enumerative method for 

inferring a limited class of context-sensitive graph grammars is due to Bartsch-Spörl (1983). 

Other algorithms utili ze a merging technique for hyperedge replacement grammars (Jeltsch and 



Kreowski 1991) and regular tree grammars (Carrasco et al. 1998). Our approach is based on a 

method for discovering frequent substructures in graphs (Cook and Holder 2000). 

In the following section we discuss different types of graph grammars and argue how they 

can be useful in machine learning. We then describe the graph grammars we set out to learn and 

define some terminology. Next, we present a set of examples to provide some visual insight with 

graph grammars before we describe the algorithm. Then, we present a working example on an 

artificial domain to better ill ustrate the algorithm. Next, we discuss the types of grammars the 

algorithm can learn, as well as point out some of its limitations. We conclude with an overall 

assessment of the approach and give directions for future work. 

 

Graph Grammars and Machine Learning 

When learning a grammar in general, one has to decide the intended use of the grammar. 

Grammars have two applications: to parse or to generate a language. Parser grammars are 

optimized for fast parsing, giving up a littl e accuracy which results in grammars that over-accept. 

That is, they will accept “sentences” that are not in the language. Generator grammars trade 

accuracy for speed as well . As expected, they will not be able to generate the entire language. A 

grammar that can generate and parse the same language exactly is very hard to design and is 

usually too big and slow to be practical. 

In this paper we are addressing the problem of inferring graph grammars from positive 

examples. Our purpose is to use grammar learning as an approach to data mining, but other uses 

can also be found. The generated graph grammar will be our theory of the input domain. 

In machine learning, algorithms in general are attempting to learn theories that can generalize 

to a certain degree, so that new, unseen data can be accurately categorized. Translated to 



grammar terms, we would like to learn a grammar that accepts more than just the training 

language. Therefore, we would like to learn parser grammars, which have the power to express 

more general concepts than the sum of the positive examples. 

Grammars can be context-sensitive and context-free. Context-sensitive graph grammars are 

more expressive and allow the specification of graph transformations, since both sides of the 

production can be arbitrary graphs. To start with, however, we aimed at learning context-free 

grammars that have single-vertex non-terminals on the left side of production rules. This is not a 

serious limitation, especially since the vast majority of graph grammar parsers can only deal with 

exactly such grammars (Rekers and Schürr 1995). 

So why learn graph grammars versus textual ones? Textual grammars are also useful, but 

they are limited to databases that can be represented as a sequence. An example of such a 

database is a DNA sequence. Most databases, however, have a non-sequential structure, and 

many have significant structural components. Relational databases are generally good examples, 

but even more complex information can be represented using graphs. Examples include circuit 

diagrams and the world-wide web. Graph grammars can still represent the simpler feature 

vector-type databases as well as sequential databases (like the DNA mentioned previously). 

Graphs are among the most expressive representations, therefore an algorithm that can learn a 

theory of a graph would be useful. 

We have to emphasize that our purpose in learning graph grammars is not to provide an 

eff icient graph parsing algorithm. Graph parsing will be necessary for classifying unseen 

example graphs, and while the parsing eff iciency of the graph grammar will be a concern here, it 

is not a primary goal of the generalization step. 

 



Graph Grammars 

Before we get into the details of inferring graph grammars, we first give a general overview of 

the type of grammar we seek to learn. 

In this paper, and in our research in general, we are concerned with graph grammars of the 

set theoretic approach, or expression approach (Nagl 1987). In this approach a graph is a pair of 

sets G = 〈V, E〉 where V is the set of vertices or nodes, and E ⊆ V  × V is the set of edges. 

Production rules are of the form S Æ P, where S and P are graphs. When such a rule is applied to 

a graph, an isomorphic copy of S is removed from the graph along with all it s incident edges, 

and is replaced with a copy of P, together with edges connecting it to the graph. The new edges 

are given new labels to reflect their connection to the substructure instance. 

A special case of the set-theoretic approach is the node-label controlled grammar, in which S 

consists of a single labeled node (Engelfriet and Rozenberg 1991). This is the type of grammar 

we are focusing on. In our case, S is always a non-terminal, but P can be any graph, and can 

contain both terminals and non-terminals. Since we are going to learn grammars to be used for 

parsing, the embedding function is irrelevant. External edges that are incident on a vertex in the 

subgraph being replaced (P) always get reconnected to the single vertex S. 

Recursive productions are of the form S Æ P S. The non-terminal S is on both sides of the 

production, and P is linked to S via a single edge. The complexity of the algorithm is exponential 

in the number of edges considered between recursive instances, so we limit the algorithm to one 

for now. If the grammar is used for graph generation, this rule will generate an infinitely long 

sequence of the graph P. If the language is to be finite, a stopping alternative production is 

required. One such production is S Æ P S | ∅, which reads “ replace S with P S or nothing.” For 

our purposes, however, we use the production S Æ P S | P. The rule S Æ P S | ∅, when used for 



parsing, would imply that nothing can be replaced with S, introducing an arbitrary number of 

S’s. At the same time, it cannot parse a chain of P’s of f inite length as it would have no starting 

point, since P S does not exist in the input graph. Remember that the stopping alternative of a 

graph generator rule is the starting point of a parser rule. 

When parsing a graph, we start from the complete graph and work towards a single non-

terminal. This is done by removing subgraphs from the graph that match the right side of a 

production and inserting the non-terminal on the left side—in our example, replace P S with S, 

and finally, P with S. An example of a recursive production is shown in Figure 1c, (S1). 

Alternative productions are of the form S Æ P1 | P2 | … | Pn. The non-terminal graph S can be 

thought of as a variable having possible values P1, P2, …, Pn. We will sometimes refer to such an 

S as a variable non-terminal, or simply variable. If S is a single vertex, and Pi are also single 

vertices, then S is synonymous with a regular non-graph variable. Its values are the vertex labels, 

which can be alphanumeric values like numbers (discrete or continuous) or string descriptions. 

An example of a variable is shown in Figure 1c, where S2 has possible values ‘c’ and ‘d’ . 

 

Examples 

Before presenting the algorithm, a couple of examples are given here to further clarify what we 

are trying to accomplish. The first example is suggested by the authors of Sequitur (Nevill -

Manning and Witten 1997). Sequitur infers compositional hierarchies from strings. It detects 

repetition and factors it out by forming rules in a grammar. 

The example string to be analyzed is “abcabdabcabd”. The grammar generated by Sequitur is 

shown in Figure 1a. (Non-terminals are in italic bold font.) Our algorithm, called SubdueGL, 

learns graph grammars; therefore, the input has to be in a graph format. This sequential data was 



represented by a series of vertices having labels according to the example, connected by single 

edges, as shown in Figure 1b. The graph grammar learned by SubdueGL is shown in Figure 1c, 

while its sequential interpretation is shown in Figure 1d. The first obvious difference is that 

SubdueGL is able to learn recursive grammars. SubdueGL’s version of the grammar is also more 

general, since it would parse a string of any length, and the letters ‘c’ and ‘d’ do not have to 

follow  in  the  same  order.  This example will be referenced in the next section where we 

describe the algorithm. 

The next example is a variation of the previous one, with an ‘x’ slightly breaking the 

regularity in the pattern: “abcabdxabcabd”. The grammar learned by Sequitur is shown in Figure 

2a and is very similar to the previous one in Figure 1a. SubdueGL, however, added an extra 

production to its grammar, resulting in the grammar shown in Figure 2b. 

 

 

 

 

 

Figure 2  Grammars by a) Sequitur  and b) SubdueGL 
learned from “abcabdxabcabd” .   
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Figure 1  First example: a) Grammar by Sequitur  b) Input graph to SubdueGL  c) 
Graph grammar by SubdueGL  d) Equivalent string grammar  
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A third example is given later, after the introduction of the algorithm. That example involves 

an artificial domain which was specifically designed to highlight SubdueGL’s capabilities.  

 

The Learning Algorithm 

The SubdueGL algorithm is based on the Subdue (Cook and Holder 2000) knowledge discovery 

algorithm that extracts common substructures from graphs. SubdueGL takes data sets in a graph 

format as input, hence a database needs to be represented as a graph before passing it to 

SubdueGL. The graph representation includes the standard features of graphs: labeled vertices 

and labeled edges. Edges can be directed or undirected. No restrictions are placed on the input 

graph. When converting a data set to a graph representation, typically objects and data are 

mapped to vertices, and relationships and attributes are mapped to edges. 

Search 

SubdueGL performs an iterative search on the input graph, each iteration resulting in a grammar 

production. When a production is found, the right side of the production is abstracted away from 

the input graph by replacing each occurrence of it by the non-terminal on the left side. 

SubdueGL keeps iterating until the entire input graph is abstracted away into a single non-

terminal. User-specified limits can be placed on the number of productions to be found, and on 

the maximum size of each production rule (in number of vertices). For other user-defined options 

please see earlier publications, or the user manual, available at http://cygnus.uta.edu/subdue/. 

In each iteration SubdueGL performs a beam search for the best substructure to be used in 

the next production rule. The search starts by finding each uniquely labeled vertex and all their 

instances in the input graph. In our first example the input graph (shown in Figure 1b) has 4 

uniquely labeled vertices ‘a’, ‘b’, ‘c’ and ‘d’, each having 4, 4, 2 and 2 instances, respectively. 

The subgraph definition and all instances are referred to as a substructure. The 



ExtendSubgstructure search operator is applied to each of these single-vertex substructures to 

produce 2-vertex substructures. This operator extends a substructure in all possible directions, 

and collects instances that match, possibly resulting in several new substructures. In our 

example, extending the unique vertex will result in instances like ‘ab’, ‘ca’ and ‘da’. These are 

different from each other, but each have several instances of their own. These instances are 

collected to form new substructures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The resulting substructures are evaluated according to the minimum description length 

(MDL) principle, which states that the best theory is the one that minimizes the description 

length of the entire data set. The MDL principle was introduced by Rissanen (1989), and applied 

to graph-based knowledge discovery by Cook and Holder (1994). The “value” of a substructure 

SubdueGL ( graph G, int Beam, int Limit ) 
   repeat 
      grammar = {} 
      queue Q = { v | v has a unique label in G } 
      bestSub = first substructure in Q 
      repeat 
         newQ = {} 
         for each substructure S in Q 
            newSubs = ExtendSubstructure(S) 
            recursiveSubs = RecursifySubstructure(S) 
            newQ = newQ U newSubs U recursiveSubs 
            Limit = Limit - 1 
         evaluate substructures in newQ by MDL 
         Q = substructures in newQ with top Beam compression 
                scores 
         if best substructure in Q better than bestSub 
         then bestSub = best substructure in Q 
      until Q is empty or Limit <= 0 
      grammar = grammar U bestSub 
      G = G compressed by bestSub 
   until bestSub cannot compress the graph G 
   return grammar 
 
ExtendSubstructure (substructure S) 
  newSubs = S extended by an adjacent edge in all possible ways 
  varSubs = S extended by an adjacent edge in all possible ways,               
                    replacing the added vertex with a non-terminal 
  return newSubs U varSubs 
 
RecursifySubstructure (substructure S) 
  recSubs = all possible chains of instances of S, linked by a  
                    single edge 
  return recSubs 

Figure 3  SubdueGL’s main discovery algorithm.  



is computed by dividing the description length of the input graph by the sum of the description 

lengths of the substructure and the input graph compressed by the substructure: Value(S) = 

DL(G) / (DL(S) + DL(G|S)), where G is the input graph, S is the substructure, and G | S is the 

input graph G compressed using S. DL stands for “description length.” Subd ueGL seeks to 

maximize the value. Only substructures deemed the best by the MDL principle are kept for 

further extension. 

Heuristics are applied to stop the extension process, although exhaustive analysis is also 

possible. One heuristic involves tracking the search space for local minima. The search is 

abandoned if a new local minimum is not found after a certain number of applications of the 

Extend-Substructure operator. This heuristic is used by default. Another heuristic requires the 

user to specify the maximum size of a substructure. Once the size limit is reached, the search 

terminates. There also exists an absolute limit on the number of substructures to consider during 

the search process, which can be specified by the user. These heuristics, like others in 

SubdueGL, can also be used in combination. 

Recursion 

Recursive productions are made possible by the Recursify-Substructure search operator. It is 

applied to each substructure after the ExtendSubstructure operator. Recursify-Substructure 

checks each instance of the substructure to see if it is connected to any other instance of the same 

substructure by an edge. If so, a recursive production is possible. The operator adds the 

connecting edge to the substructure and collects all possible chains of instances. If a recursive 

production is found to be the best in an iteration, each such chain of subgraphs is abstracted 

away by replacing them with a single vertex. 



Since SubdueGL discovers commonly occurring substructures first and then attempts to 

make a recursive production, SubdueGL can only discover recursive productions that parse lists 

of substructures. In other words, it can only make recursive productions out of li sts of 

substructures that are connected by a single edge, which have to have the same label between 

each member substructure of the list. The algorithm is exponential in the number of edges 

considered in the recursion, so we limit SubdueGL to single-edge recursive productions. 

Therefore, the system does not yet learn productions such as S Æ aSb.  

The stopping condition in the recursion is generated by removing the recursive vertex along 

with the edge that connects it to the rest of the subgraph. 

Variables 

The major insight behind discovering variables is that the context they appear in has to be 

constant. In other words, the first step towards discovering variables is discovering commonly 

occurring structures. If these commonly occurring structures are connected to varying vertices, 

these varying vertices can be turned into variables. Variables have to be connected to each 

instance of the common substructure the same way—connected by an edge of the same label and 

direction to the same vertex. We give an example of this in the next section, but looking at the 

input graph in Figure 4 and the grammar rule in Figure 7 at this point could be helpful. 

SubdueGL discovers variables inside the ExtendSub-structure search operator. As mentioned 

before, SubdueGL extends each instance of a substructure in all possible ways and collects the 

instances that still match. After this step, it collects all i nstances that were extended by the same 

edge, regardless of what vertex they point to (as long as that vertex is not already in the 

substructure). This new vertex, is replaced with a variable (non-terminal) vertex. The 

substructure is then evaluated and competes with others for top placement. Generally speaking, if 



the variable has the same value for most of the instances, the substructure will rank worse than 

the equivalent structure without the variable because of the extra bits needed to encode the 

variable. On the other had, if the variable has many values, it helps to cover many more instances 

of the substructure than the equivalent structure without the variable, and will compress the input 

graph better. 

Let us work an example to ill ustrate the above explanation. 

 

An Illustrative Example 

In this section we give a working example of SubdueGL’s operation. Consider the input graph 

shown in Figure 4. It is the graph representation of an artificially generated domain. It features 

lists of static structures (square shape), a li st of a changing structure (triangle shape), and some 

additional random vertices and edges. For a cleaner appearance we omitted edge labels in the 

figures. The edge labels within the triangle-looking subgraph are ‘ t’, in the square-looking 

subgraph ‘s’, and the rest of the edges are labeled ‘next’.  

 

 

 

 

 

SubdueGL starts out by collecting all the unique vertices in the graph and expanding them in 

all possible directions. Let us follow the extension of vertex ‘x’—keeping in mind that the others 

are expanded in parallel. When we expand vertex ‘x’ in all possible directions, it results in 2-

vertex substructures, with edges (x, s, y), (x, s, z), (y, next, x), and (x, next, r). The fist two 
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Figure 4  Input graph. 



substructures will rank higher, since those have four instances and will compress the graph better 

than the latter two with only 2 and 1 instances respectively. 

 

 

 

 

Applying the ExtendSubstructure operator three more times will result in a substructure 

having vertices {x, y, z, q} and four edges connecting these four vertices. This substructure has 

four instances. Being the biggest and most common substructure, it will rank on the top. 

Executing the RecursifySubstructure operator will result in the recursive grammar rule shown in 

Figure 5. The production covers two lists of two instances of the substructure. 

The recursive production was constructed by checking all outgoing edges of each instance to 

see if they are connected to any other instance. We can see in Figure 4 that the instance in the 

lower left is connected to the instance on its right, via vertex ‘y’ being connected to vertex ‘x’. 

Same is the situation on the lower right side. Abstracting out these four instances of the 

substructure using the above production results in the graph depicted in Figure 6. 

The next iteration of SubdueGL will use this graph as its input graph to learn the next 

grammar rule. Looking at the graph, one can easily see that the most common substructure now 

is the triangle-looking subgraph. SubdueGL will in fact find a portion of that simply by looking 

for substructures that are exactly the same. This part is the substructure having vertices {a, b} 

and edge (a, t, b). It has four instances. Extending this structure further by an edge and a vertex 

will add different vertices for each instance: ‘c’, ‘d’, ‘e’, and ‘f’. The resulting single instance 

substructures will not do well when evaluated by the MDL measure. 

Figure 6  Input graph, parsed by the first production   
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SubdueGL at this point will generate another substructure with four instances, replacing 

vertices ‘c’, ‘d’, ‘e’, and ‘f’ with a non -terminal vertex (S3) in the substructure, thereby creating a 

variable. This substructure now has four instances, and stands the best chance of getting selected 

for the next production. 

After the ExtendSubstructure operation, however, SubdueGL will hand the substructure to 

Recursify-Substructure to see if any of the instances are connected. Since all four of them are 

connected by an edge, a recursive substructure is created which will cover even more of the input 

graph, having included three additional edges. Also, it is replaced by a single non-terminal in the 

input graph, versus four non-terminals when abstracting out the instances non-recursively, one-

by-one.  

The new productions generated in this iteration are shown in Figure 7. Abstracting away 

these substructures produces the graph shown in Figure 8. 

 

 

 

 

In the next iteration, SubdueGL cannot find any recurring substructures that can be 

abstracted out to reduce the graph’s description length. The graph in Figure 8, therefore becomes 

the right side of the last production. When this rule is executed, the graph is fully parsed. 

 

Discussion 

SubdueGL required only minor extensions to Subdue mainly because of the robustness of the 

MDL heuristic.  Grammars with large amounts of disjunction, either in the form of multiple 

Figure 8  Input graph parsed by the second and third 
productions 
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productions or large discrete ranges for variables, tradeoff with simpler grammars with less 

coverage. The MDL measure provides a reasonable tradeoff between the two. 

The next step in our analysis of the SubdueGL approach is to empirically validate the 

algorithm and find its limitations.  Empirical testing is difficult for graph grammar learning due 

to the shortage of competitors and real-world examples. However, automated testing may be 

possible by randomly generating graph grammars, generating examples from these grammars, 

and then analyze SubdueGL’s behavior while attempting to learn the original grammar.  Random 

graph grammar generation is not trivial given the huge space of possible grammars, but such a 

methodology would allow us some measure of SubdueGL’s effectiveness in this domain.  

We have also considered a complexity analysis of SubdueGL. Since we are limiting 

SubdueGL to recursive productions involving only one connecting edge, the complexity is no 

more than that of Subdue, which is constrained to be polynomial in the size of the input graph. 

 

Conclusions and Future Work 

In this paper we introduced an algorithm, SubdueGL, which is able to learn graph grammars 

from examples. The algorithm is based on the earlier system called Subdue which has had 

success in structural data mining for years. SubdueGL focuses on context-free parser graph 

grammars. Although incomplete, its current capabilities include finding static structures, finding 

variables, and finding recursive structures. 

As mentioned at the beginning, this paper reports on a work in progress. Our future plans 

include expanding graph grammar learning with concept learning, and handling continuous 

values. As future results warrant, we may allow variables to take on values that are not restricted 

to be single vertices. We also plan to investigate other ways to identify recursive structures, with 



focus on allowing the recursive non-terminal to be embedded in a subgraph, connecting with 

more than a single edge. 

We will evaluate our progress by comparing the system’s performance to some competing 

machine learning algorithms, such as inductive logic programming systems. We also have plans 

to apply SubdueGL to real-world domains, such as circuit diagrams and protein sequences. 
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