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Abstract
Remgnizing the expressve power of graph representation and the aility of certain graph
grammars to generalize, we dtempt to use graph grammar learning for concept formation. In this
paper we describe our initial progress toward that goal, and focus on hav certain graph
grammars can be leaned from examples. We dso establi sh grounds for using graph grammarsin

madchine leaning tasks. Several examples are presented to highlight the validity of the gproac.

Introduction
Graphs are important data structures because of their ability to represent any kind d data
Algorithms that generate theories of graphs are of gred importance in data mining and machine
leaning. In this paper we describe an algorithm which leans graph grammars—a set of grammar
production rules that describe agraph-based database.

The goa of our reseach is to adapt graph grammar leaning for concept formation, hopng
that the expressve power of graphs and the avility of graph grammars to generali ze will turn ou
to be apowerful leaning paradigm. This paper presentsinitial progresstoward that goal and sets
the stage for subsequent work.

Only a few algorithms exist for inference of graph grammars. An enumerative method for
inferring a limited class of context-sensitive graph grammars is due to Bartsch-Spdrl (1983.

Other algorithms utilize amerging technique for hyperedge replacenent grammars (Jeltsch and



Kreowski 1991) and regular tree grammars (Carrasco et a. 1998). Our approach is based ona
methodfor discovering frequent substructures in graphs (Cook and Holder 2000.

In the following sedion we discuss different types of graph grammars and argue how they
can be useful in macdine leaning. We then describe the graph grammars we set out to learn and
define some terminology. Next, we present a set of examples to provide some visual insight with
graph grammars before we describe the dgorithm. Then, we present a working example on an
artificial domain to better ill ustrate the dgorithm. Next, we discuss the types of grammars the
algorithm can lean, as well as point out some of its limitations. We @nclude with an owerall

asesgnent of the goproach and give diredions for future work.

Graph Grammarsand Machine Learning

When leaning a grammar in general, ore has to dedde the intended use of the grammar.
Grammars have two applicaions. to parse or to generate alanguage. Parser grammars are
optimized for fast parsing, giving up alittl e acarracy which results in grammars that over-accept.
That is, they will accept “sentences’ that are nat in the language. Generator grammars trade
acarragy for speal as well. As expeded, they will not be ale to generate the entire language. A
grammar that can generate and parse the same language exadly is very hard to design and is
usualy too kg and slow to be pradicd.

In this paper we ae aldressng the problem of inferring graph grammars from positive
examples. Our purpose isto use grammar leaning as an approacd to data mining, bu other uses
can aso be found.The generated graph grammar will be our theory of the input domain.

In madine learning, algorithmsin general are @tempting to lean theories that can generalize

to a cetain degree so that new, urseen data can be accrately caegorized. Trandlated to



grammar terms, we would like to lean a grammar that accets more than just the training
language. Therefore, we would like to lean parser grammars, which have the power to express
more general concepts than the sum of the positive examples.

Grammars can be cntext-sensitive and context-free Context-sensitive graph grammars are
more expressve and allow the spedficaion d graph transformations, since both sides of the
production can be abitrary graphs. To start with, havever, we amed at leaning context-free
grammars that have single-vertex nonterminals on the left side of productionrules. Thisisnot a
serious limitation, espedally sincethe vast mgority of graph grammar parsers can orly ded with
exadly such grammars (Rekers and Schirr 1995.

So why lean graph grammars versus textual ones? Textual grammars are dso useful, bu
they are limited to databases that can be represented as a sequence An example of such a
database is a DNA sequence Most databases, however, have anonsequential structure, and
many have significant structural componrents. Relational databases are generaly good examples,
but even more cmmplex information can be represented using graphs. Examples include arcuit
diagrams and the world-wide web. Graph grammars can il represent the simpler fedure
vedor-type databases as well as squentia databases (like the DNA mentioned previoudly).
Graphs are anong the most expressve representations, therefore an algorithm that can lean a
theory of a graph would be useful.

We have to emphasize that our purpose in leaning graph grammars is not to provide an
efficient graph parsing algorithm. Graph parsing will be necessary for classfying unseen
example graphs, and whil e the parsing efficiency of the graph grammar will be a @ncern here, it

isnot aprimary goa of the generali zation step.



Graph Grammars
Before we get into the details of inferring graph grammars, we first give a genera overview of
the type of grammar we seek to learn.

In this paper, and in our research in general, we are concerned with graph grammars of the
set theoretic approach, or expression approach (Nagl 1987). In this approach a graph is a pair of
sets G = [V, Edwhere V is the set of vertices or nodes, and E O V x V is the set of edges.
Production rules are of the form S > P, where S and P are graphs. When such arule is applied to
a graph, an isomorphic copy of S is removed from the graph along with all its incident edges,
and is replacal with a wpy of P, together with edges conreding it to the graph. The new edges
are given new labelsto refled their connedion to the substructure instance.

A spedal case of the set-theoretic goproacd is the node-label controlled grammar, in which S
consists of a single labeled noce (Engelfriet and Rozenberg 1991). This is the type of grammar
we ae focusing on. In ou case, S is aways a nonterminal, bu P can be any graph, and can
contain bah terminals and nonterminals. Since we ae going to lean grammars to be used for
parsing, the embedding function isirrelevant. External edges that are incident on a vertex in the
subgraph keing replaced (P) always get reconrneded to the single vertex S.

Reaursive productions are of the form S - P S The nonterminal S is on bdh sides of the
production,and Pislinked to S via asingle edge. The complexity of the dgorithm is exporential
in the number of edges considered between reaursive instances, so we limit the dgorithm to ore
for now. If the grammar is used for graph generation, this rule will generate an infinitely long
sequence of the graph P. If the language is to be finite, a stopping aternative production is

required. One such productionis S - P S| [, which reads “replaceS with P Sor nathing.” For

our purposes, howvever, we use the productionS—> P S| P. Therule S-> P S| [J, when used for



parsing, would imply that nothing can be replaced with S, introducing an arbitrary number of
S's. At the same time, it canna parse a tain of P's of finite length as it would have no starting
point, since P Sdoes nat exist in the inpu graph. Remember that the stoppng alternative of a
graph generator ruleisthe starting point of a parser rule.

When parsing a graph, we start from the cmplete graph and work towards a single non
terminal. This is dore by removing subgraphs from the graph that match the right side of a
production and inserting the nonterminal on the left sside—in ou example, replaceP Swith S
andfinaly, Pwith S. An example of areaursive productionis shown in Figure 1c, (S,).

Alternative prodictions are of theform S > Py | P, | ... | P.. The nonterminal graph S can be
thought of as avariable having possble values Py, P,, ..., Ph. We will sometimes refer to such an
S as a variable nonterminal, or simply variable. If S is a single vertex, and P, are dso single
vertices, then Sis gynonymous with aregular nongraph variable. Its values are the vertex labels,
which can be dphanumeric values like numbers (discrete or continuous) or string descriptions.

An example of avariableis hown in Figure 1c, where S, has passblevalues‘c’ and‘d’.

Examples
Before presenting the dgorithm, a wude of examples are given here to further clarify what we
are trying to acaomplish. The first example is suggested by the authors of Sequitur (Nevill -
Manning and Witten 1997. Sequitur infers compositional hierarchies from strings. It deteds
repetition and fadorsit out by forming rulesin agrammar.
The example string to be analyzed is “abcabdabcabd’. The grammar generated by Sequitur is
shown in Figure 1a. (Nonterminals are in italic bold font.) Our agorithm, cdled SubdweGL,

leans graph grammars; therefore, the inpu has to be in agraph format. This squentia data was



represented by a series of vertices having labels acording to the example, conreded by single
edges, as 1own in Figure 1b. The graph grammar leaned by SubdweGL is shown in Figure 1c,
while its squentia interpretation is shown in Figure 1d. The first obvious difference is that
SubdeGL is able to lean reaursive grammars. SubdweGL's version d the grammar is also more
genera, since it would parse astring of any length, and the letters ‘'c’ and ‘d’ do nd have to
follow in the same order. This example will be referenced in the next sedion where we

describe the algorithm.

S>11 O ACLOZ02C S,>abs,s;

1>2c2d bS

23 ab | S sad”
) @—’@|@ 9 d)

Figurel First example: @) Grammar by Sequitur b) Input graph to SubdueGL c)
Graph grammar by SubdueGL d) Equivalent string grammar

The next example is a variation d the previous one, with an ‘x’ dlightly bre&ing the
regularity in the pattern: “abcabdxabcabd’. The grammar leaned by Sequitur is $rown in Figure
2a and is very similar to the previous one in Figure la. SubdueGL, however, added an extra

production to its grammar, resulting in the grammar shown in Figure 2b.

S>1x1 SléabSZSl
1>2c2d | ab$s;
2->ab S;,~>c|d
Sg%Slxsl
a) b)

Figure2 Grammars by a) Sequitur and b) SubdueGL
leaned from “abcabdxabcabd’.



A third example is given later, after the introduction of the algorithm. That example involves

an artificial domain which was specifically designed to highlight SubdueGL’s capabilities.

The Learning Algorithm
The SubdueGL agorithm is based on the Subdue (Cook and Holder 2000) knowledge discovery
agorithm that extracts common substructures from graphs. SubdueGL takes data sets in a graph
format as input, hence a database needs to be represented as a graph before passing it to
SubdueGL. The graph representation includes the standard features of graphs: labeled vertices
and labeled edges. Edges can be directed or undirected. No restrictions are placed on the input
graph. When converting a data set to a graph representation, typically objects and data are
mapped to vertices, and relationships and attributes are mapped to edges.
Search
SubdueGL performs an iterative search on the input graph, each iteration resulting in a grammar
production. When a production is found, the right side of the production is abstracted away from
the input graph by replacing each occurrence of it by the non-terminal on the left side.
SubdueGL keeps iterating until the entire input graph is abstracted away into a single non-
terminal. User-specified limits can be placed on the number of productions to be found, and on
the maximum size of each production rule (in number of vertices). For other user-defined options
please see earlier publications, or the user manual, available at http://cygnus.uta.edu/subdue/.

In each iteration SubdueGL performs a beam search for the best substructure to be used in
the next production rule. The search starts by finding each uniquely labeled vertex and all their
instances in the input graph. In our first example the input graph (shown in Figure 1b) has 4
uniquely labeled vertices ‘a, ‘b, ‘'c’ and ‘d’, each having 4, 4, 2 and 2 instances, respectively.

The subgraph definition and all instances are referred to as a substructure. The



ExtendSubgstructure search operator is applied to each of these single-vertex substructures to
produce 2-vertex substructures. This operator extends a substructure in all possible directions,
and collects instances that match, possibly resulting in several new substructures. In our
example, extending the unique vertex will result in instances like ‘ab’, ‘ca and ‘da’. These are

different from each other, but each have several instances of their own. These instances are

collected to form new substructures.

SubdueGL ( graph G, int Beam, int Limit )
repeat
grammar = {}
queue Q ={v | v has a unique label in G }
bestSub = first substructure in Q
repeat
newQ = {}
for each substructure S in Q
newSubs = ExtendSubstructure(S)
recursiveSubs = RecursifySubstructure(S)
newQ = newQ U newSubs U recursiveSubs
Limit = Limit - 1
evaluate substructures in newQ by MDL
Q = substructures in newQ with top Beam compression
scores
if best substructure in Q better than bestSub
then bestSub = best substructure in Q
until Q is empty or Limit <=0
grammar = grammar U bestSub
G = G compressed by bestSub
until bestSub cannot compress the graph G
return grammar

ExtendSubstructure (substructure S)
newSubs = S extended by an adjacent edge in all possible ways
varSubs = S extended by an adjacent edge in all possible ways,
replacing the added vertex with a non-terminal
return newSubs U varSubs
RecursifySubstructure (substructure S)
recSubs = all possible chains of instances of S, linked by a
single edge
return recSubs

Figure 3 SubdueGL's main discovery algorithm.

The resulting substructures are evaluated according to the minimum description length
(MDL) principle, which states that the best theory is the one that minimizes the description
length of the entire data set. The MDL principle was introduced by Rissanen (1989), and applied

to graph-based knowledge discovery by Cook and Holder (1994). The “value’ of a substructure



is computed by dividing the description length of the input graph by the sum of the description
lengths of the substructure and the input graph compressed by the substructure: Value(S) =
DL(G) / (DL(S) + DL(GJS)), where G is the input graph, Sis the substructure, and G | Sis the
input graph G compressed using S. DL stands for “description length.” Subd ueGL seeks to
maximize the value. Only substructures deemed the best by the MDL principle are kept for
further extension.

Heuristics are applied to stop the extension process, athough exhaustive analysis is also
possible. One heuristic involves tracking the search space for local minima. The search is
abandoned if a new loca minimum is not found after a certain number of applications of the
Extend-Substructure operator. This heuristic is used by default. Another heuristic requires the
user to specify the maximum size of a substructure. Once the size limit is reached, the search
terminates. There also exists an absolute limit on the number of substructures to consider during
the search process, which can be specified by the user. These heuristics, like others in
SubdueGL, can also be used in combination.

Recursion

Recursive productions are made possible by the Recursify-Substructure search operator. It is
applied to each substructure after the ExtendSubstructure operator. Recursify-Substructure
checks each instance of the substructure to seeiif it is connected to any other instance of the same
substructure by an edge. If so, a recursive production is possible. The operator adds the
connecting edge to the substructure and collects all possible chains of instances. If a recursive
production is found to be the best in an iteration, each such chain of subgraphs is abstracted

away by replacing them with asingle vertex.



Since SubdweGL discovers commonly occurring substructures first and then attempts to
make areaursive production, SubdweGL can orly discover reaursive productions that parse lists
of substructures. In ather words, it can oy make reaursive productions out of lists of
substructures that are wnreded by a single edge, which have to have the same label between
ead member substructure of the list. The dgorithm is exporentia in the number of edges
considered in the reaursion, so we limit SubdweGL to single-edge reaursive productions.
Therefore, the system does nat yet lean productions such as S - aSh.

The stoppng condtion in the reaursion is generated by removing the reaursive vertex along
with the edge that conredsit to the rest of the subgraph.

Variables

The maor insight behind dscovering variables is that the mntext they appea in hes to be
constant. In ather words, the first step towards discovering variables is discovering commonly
ocaurring structures. If these commonly occurring structures are wnneded to varying vertices,
these varying vertices can be turned into variables. Variables have to be mnreded to eadh
instance of the ammmon substructure the same way—conneded by an edge of the same label and
diredion to the same vertex. We give an example of this in the next sedion, bu looking at the
inpu graphin Figure 4 and the grammar rulein Figure 7 at this point could be helpful.

SubdweGL discovers variables inside the ExtendSub-structure seach operator. As mentioned
before, SubdweGL extends ead instance of a substructure in al possble ways and colleds the
instances that still match. After this dep, it colleds all i nstances that were extended by the same
edge, regardless of what vertex they paint to (as long as that vertex is not adrealy in the
substructure). This new vertex, is replacel with a variable (nontermina) vertex. The

substructure is then evaluated and competes with athers for top dacement. Generaly spe&king, if



the variable has the same value for most of the instances, the substructure will rank worse than
the eguivalent structure withou the variable becaise of the etra bits nealed to encode the
variable. On the other had, if the variable has many values, it helps to cover many more instances
of the substructure than the equivalent structure withou the variable, and will compressthe input
graph Letter.

Let uswork an exampleto ill ustrate the dove explanation.

An Illustrative Example
In this dion we give aworking example of SubdweGL’s operation. Consider the inpu graph
shown in Figure 4. It is the graph representation o an artificially generated damain. It feaures
lists of static structures (square shape), a list of a dianging structure (triangle shape), and some
additional randam vertices and edges. For a deaner appeaance we omitted edge labels in the
figures. The alge labels within the triangle-looking subgraph are ‘t’, in the square-looking

subgraph ‘s, andthe rest of the alges are labeled ‘ next'.

Figure4 Input graph.

SubdweGL starts out by colleding all the unique vertices in the graph and expanding them in
al posshle diredions. Let usfollow the extension of vertex ‘x’—keegoing in mind that the others
are expanded in parallel. When we expand \ertex ‘X’ in al possble diredions, it results in 2-

vertex substructures, with edges (X, s, y), (X, s, 2), (y, next, x), and (X, next, r). The fist two



substructures will rank higher, since those have four instances and will compress the graph better

than the latter two with only 2 and 1 instances respectively.

& — O0©® | &0
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Figure5 First production generated by SubdueGL

Figure 6 Input graph, parsed by the first production

Applying the ExtendSubstructure operator three more times will result in a substructure
having vertices {x, vy, z, q} and four edges connecting these four vertices. This substructure has
four instances. Being the biggest and most common substructure, it will rank on the top.
Executing the RecursifySubstructure operator will result in the recursive grammar rule shown in
Figure 5. The production covers two lists of two instances of the substructure.

The recursive production was constructed by checking all outgoing edges of each instance to
see if they are connected to any other instance. We can see in Figure 4 that the instance in the
lower left is connected to the instance on its right, via vertex 'y’ being connected to vertex ‘x'.
Same is the situation on the lower right side. Abstracting out these four instances of the
substructure using the above production results in the graph depicted in Figure 6.

The next iteration of SubdueGL will use this graph as its input graph to learn the next
grammar rule. Looking at the graph, one can easily see that the most common substructure now
is the triangle-looking subgraph. SubdueGL will in fact find a portion of that simply by looking
for substructures that are exactly the same. This part is the substructure having vertices { a, b}
and edge (a, t, b). It has four instances. Extending this structure further by an edge and a vertex
will add different vertices for each instance: ‘c’, ‘d’, ‘€, and ‘f’. The resulting single instance

substructures will not do well when evaluated by the MDL measure.



SubdueGL at this point will generate another substructure with four instances, replacing
vertices‘c, ‘d, ‘€, and ‘f’ with anon -terminal vertex (Sg) in the substructure, thereby creating a
variable. This substructure now has four instances, and stands the best chance of getting selected
for the next production.

After the ExtendSubstructure operation, however, SubdueGL will hand the substructure to
Recursify-Substructure to see if any of the instances are connected. Since all four of them are
connected by an edge, a recursive substructure is created which will cover even more of the input
graph, having included three additional edges. Also, it is replaced by a single non-termina in the
input graph, versus four non-terminals when abstracting out the instances non-recursively, one-
by-one.

The new productions generated in this iteration are shown in Figure 7. Abstracting away

these substructures produces the graph shown in Figure 8.

® @ & @
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& —»0© | @l ® | ® Figure8 Input graph parsed by the second and third

) ) ) productions
Figure 7 Second and third productions by SubdueGL

In the next iteration, SubdueGL cannot find any recurring substructures that can be
abstracted out to reduce the graph’s description length. The graph in Figure 8, therefore becomes

the right side of the last production. When thisrule is executed, the graph is fully parsed.

Discussion
SubdueGL required only minor extensions to Subdue mainly because of the robustness of the

MDL heuristic. Grammars with large amounts of digunction, either in the form of multiple



productions or large discrete ranges for variables, tradeoff with ssimpler grammars with less
coverage. The MDL measure provides a reasonabl e tradeoff between the two.

The next step in our analysis of the SubdueGL approach is to empiricaly validate the
algorithm and find its limitations. Empirical testing is difficult for graph grammar learning due
to the shortage of competitors and rea-world examples. However, automated testing may be
possible by randomly generating graph grammars, generating examples from these grammars,
and then analyze SubdueGL's behavior while attempting to learn the original grammar. Random
graph grammar generation is not trivial given the huge space of possible grammars, but such a
methodol ogy would allow us some measure of SubdueGL’s effectiveness in this domain.

We have dso considered a complexity analysis of SubdueGL. Since we are limiting
SubdueGL to recursive productions involving only one connecting edge, the complexity is no

more than that of Subdue, which is constrained to be polynomial in the size of the input graph.

Conclusions and Future Work

In this paper we introduced an algorithm, SubdueGL, which is able to learn graph grammars
from examples. The agorithm is based on the earlier system called Subdue which has had
success in structural data mining for years. SubdueGL focuses on context-free parser graph
grammars. Although incomplete, its current capabilities include finding static structures, finding
variables, and finding recursive structures.

As mentioned at the beginning, this paper reports on a work in progress. Our future plans
include expanding graph grammar learning with concept learning, and handling continuous
values. As future results warrant, we may allow variables to take on values that are not restricted

to be single vertices. We also plan to investigate other ways to identify recursive structures, with



focus on alowing the reaursive nontermina to be embedded in a subgraph, conreding with
more than asingle alge.

We will evaluate our progress by comparing the system’s performance to some @mpeting
madine leaning algorithms, such as inductive logic programming systems. We dso have plans

to apply SubdweGL to red-world damains, such as circuit diagrams and protein sequences.
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